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ABSTRACT
The computational uncertainty principle states that the numerical computation of nonlinear ordinary 
differential equations (ODEs) should use appropriately sized time steps to obtain reliable solutions. 
However, the interval of effective step size (IES) has not been thoroughly explored theoretically. In 
this paper, by using a general estimation for the total error of the numerical solutions of ODEs, a 
method is proposed for determining an approximate IES by translating the functions for truncation 
and rounding errors. It also illustrates this process with an example. Moreover, the relationship 
between the IES and its approximation is found, and the relative error of the approximation with 
respect to the IES is given. In addition, variation in the IES with increasing integration time is studied, 
which can provide an explanation for the observed numerical results. The findings contribute to 
computational step-size choice for reliable numerical solutions.

摘要
由于满足计算的不确定性原理，需适当选取时间步长以保证非线性常微分方程组数值解的可靠
性，目前尚未见关于有效步长区间的理论结果。本文对于给定的误差限，将方法截断误差与机
器舍入误差的相关曲线分别进行平移，从而得到一种确定有效步长近似区间的方法，并推导出
近似区间相比于原区间的相对误差公式。另外，研究了有效步长区间随积分时间的变化规律，
并对已有的数值结果给出解释。本文所得结论可为数值求解常微分方程组选取有效步长并得到
可靠的数值解提供理论支持。

© 2016 the Author(s). published by informa UK Limited, trading as taylor & Francis Group.

this is an open Access article distributed under the terms of the creative commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which 
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1. Introduction

Many works have shown the time-step sensibility of non-
linear dynamical systems. Li, Zeng, and Chou (2000, 2001) 
and Li (2000) proposed the computational uncertainty 
principle (CUP) for nonlinear systems of ordinary differ-
ential equations (ODEs) under a finite machine precision. 
The CUP states that using different time-step sizes usually 
results in different effective computation times (ECTs) and 
that the maximal ECT (MECT), achieved using the opti-
mal step size (OS), gives the best result. Wang and Huang 
(2006) focused on Lorenz systems, and reported that the 
maximum prediction time sensitively relies on the time-
step size under certain conditions. Teixeira, Reynolds, and 
Judd (2007) found the time-step size to affect not only 
Lorenz systems but also a quasi-geostrophic model. Liu 
et al. (2015) studied the Global/Regional Assimilation and 
Prediction System mesoscale numerical forecast, and gave 
a preliminary explanation of the applicability of OS theory 
to complicated partial differential equations (PDEs).

The CUP presented by Li, Zeng, and Chou (2000, 
2001) theoretically explained the time-step sensibility 

of nonlinear ODEs, which has been cited by many other 
researches (Hu and Chou 2004; Li and Wang 2008; Liu et al. 
2015; Wang, Li, and Li 2012; Wang, Liu, and Li 2014). In par-
ticular, based on the CUP, Wang, Li, and Li (2012) deduced 
a general ECT function of step size, which explained the 
experimental formulae proposed by Teixeira, Reynolds, 
and Judd (2007).

Through a large number of numerical experiments, 
Li, Zeng, and Chou (2000) introduced the concept of the 
interval of effective step size (IES) of ODEs. Presenting the 
IES profiles obtained from numerical results (Figure 1), Li, 
Zeng, and Chou (2000) suggested that numerical solu-
tions are reliable when step sizes belong to the IES. In such 
cases, if we know the theoretical formulae of lower and 
upper bounds of the IES corresponding to a certain error 
tolerance, it will guide the choices of effective step sizes 
in computations. However, there has been little relevant 
prior research in this regard.

This paper explores the IES for nonlinear ODEs based 
on the studies of Li, Zeng, and Chou (2000, 2001). Let Ut = 
[ht,1, ht,2] (ht,1 ≤ ht,2) denote the IES at integral time t under a 
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2. Method for determining U∗

t
, an 

approximation of Ut

First, defining (hcross, Ecross) as the intersection of the func-
tions E1(h) and E2(h), one gets
 

where C12 = C1/C2. Besides, Li, Zeng, and Chou (2000, 2001) 
stated that Ẽ(h) reaches its minimum Emin when the step 
size h takes the value of OS, and when the OS denoted by 
H, there are
 

Then, we simultaneously translate the functions E1(h) and 
E2(h) so as to move the coordinates of their intersection 
from (hcross, Ecross) to the lowest point (H, Emin) of Ẽ(h). Let  
E∗
1 (h) and E∗

2 (h) denote the translated functions, which  
are E∗

1 (h) = (1 + 1/2p)E1(h), and E∗
2 (h) = (2p + 1)E2(h). Finally, 

let E∗
1 (h) and E∗

2 (h) equal 𝛿t respectively to obtain two new 
equations whose solutions are
 

Then we regard U∗
t  = [h∗

t,1, h
∗
t,2] as the approximation of Ut 

when h∗
t,1 ≤ h∗

t,2. Taking the situation of p = C1 = C2 = 1 as an 
example, the above process is shown in Figure 2.

3. Relationship between Ut and U∗

t

From the above definitions we find: as step size h decreases, 
Ẽ(h) initially monotonically decreases to its lowest point  
(H, Emin) before monotonically increasing; E∗

1 (h) is a monoton-
ically decreasing function, whereas E∗

2 (h) is a monotonically 
increasing function of h, and their intersection is (H, Emin); it 
is easy to prove that when h < H, E∗

1 (h)>Ẽ(h) is always true, 
and when h > H, E∗

2 (h)>Ẽ(h) is true. Given these, we have:

From the statements above we know that U∗
t  ⊂ Ut when  

𝛿t > Emin, and U∗
t  = Ut = {H} when 𝛿t = Emin; however, when  

𝛿t < Emin, both Ut and U∗
t  are empty sets. These results indi-

cate that U∗
t  ⊆ Ut is always true, which suggests that U∗

t  
is suitable for serving as an approximate interval Ut. In 

(4)hcross = C
1

p+0.5

12
, and Ecross = C2C

p

p+0.5

12
,

(5)H =

(
C12

2p

) 1

p+0.5

, and Emin = C2(2p + 1)

(
C12

2p

) p

p+0.5

.

(6)h∗
t,1 =

⎡⎢⎢⎣

C1(1 +
1

2p
)

𝛿t

⎤
⎥⎥⎦

2

, and h∗
t,2 =

�
𝛿t

C2(2p + 1)

� 1

p

.

⎧⎪⎪⎨⎪⎪⎩

When 𝛿t > Emin, ht,1 < h∗
t,1 < H < h∗

t,2 < ht,2;

when 𝛿t = Emin, ht,1 = h∗
t,1 = H = h∗

t,2 = ht,2;

when 𝛿t < Emin, ht,1 and ht,2 do not exist, and h∗
t,1 > h∗

t,2,

which does not conform to the definition of U∗
t .

given error tolerance δ. To obtain Ut, it is necessary to give 
a general formula of the numerical error E(t, h) for the solu-
tions of nonlinear ODEs. In numerical calculation, E(t, h) is 
usually composed of three parts: truncation error, which is 
caused by differential equation discretization (Gear 1971; 
Stoer and Bulirsch 1993); round-off error, which is due to 
limitations of computer precision (Li, Zeng, and Chou 2000, 
2001); and initial error (Ding and Li 2008a, 2008b, 2012). 
From Li, Zeng, and Chou (2001, Equations (60) and (83)), 
it can be shown that

 

where E1(h) = C1h−0.5 is relevant to the round-off error;  
E2(h) = C2hp is relevant to the truncation error, and p is 
the order of the numerical method; e(0) is relevant to the 
initial error, and

 

The way to estimate C1 and C2, and details of other param-
eters, are given in Li, Zeng, and Chou (2001, Equations (60) 
and (83)). Letting 𝛿t = �/C(t)–Ne(0) and Ẽ(h) = E1(h)+E2(h), 
Equation (1) indicates that ht,1 and ht,2 should be the solu-
tions of the equation
 

For a fixed value of t, Equation (3) is a nonlinear equation 
associated with h, which can be solved numerically to 
obtain approximate values of ht,1 and ht,2 by methods such 
as fixed-point iteration and Newtonian iteration (Suli and 
Mayers 2003); however, it is usually hard to provide func-
tion expressions for ht,1 and ht,2 with these methods. This 
article aims to derive explicit formulae for ht,1 and ht,2, so 
as to give a general approximate explicit expression for Ut.

(1)‖E(t, h)‖ ≤ C(t)
�
E1(h) + E2(h) + Ne(0)

�
,

(2)C(t) = eĈLΓ̂(t−t0)∕

√
ĈL.

(3)Ẽ(h) = 𝛿t .
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Figure 1.  ies profiles obtained using the optimal searching 
method, when computing the solutions of the x-component of 
the Lorenz equation using the fourth-order runge–Kutta method 
for the initial value (5, 5, 10) and r = 28 and for 121 different step 
sizes in the range 10−7–10−1. source: Li, Zeng, and chou (2000, 
plate i-2(c)).
notes: here, the step size h is plotted as a logarithm (to base 10) and time is 
non-dimensional. the grey solid line is for machine single precision and the 
black dotted line is for double precision.
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addition, to obtain a non-empty set U∗
t , we suppose that 

 𝛿t ≥ Emin in the following discussion.
Next, we estimate the error of the approximation U∗

t  
with respect to Ut. For this purpose, let Δt,1 = |h∗

t,1−ht,1| and 
Δt,2 = |h∗

t,2−ht,2|. Assuming that 𝛿t ≥ Emin, the relative errors 
of h∗

t,1 and h∗
t,2 with respect to ht,1 and ht,2 are respectively

 

Obviously, ht,1 ∈ [0, H] and ht,2 ∈ [H, ∞) when 𝛿t ≥ Emin, and 
when ht,1 ∈ [0, H], |Δt,1/ht,1| decreases monotonically with 
increasing ht,1, and when ht,2 ∈ [H, ∞), |Δt,2/ht,2| increases 
monotonically with increasing ht,2. These lead to

 

Equation (8) indicates that |Δt,1/ht,1| (or |Δt,2/ht,2|) arrives 
at its infimum zero when ht,1 (or ht,2) equals H, and both 
supremums of |Δt,1/ht,1| and |Δt,2/ht,2| are only relevant to 
the numerical method order p. Table 1 lists the values of 
the supremums for p values of 1 to 10; both of these supre-
mums tend to decrease with increasing p.

(7)

|||Δt,1∕ht,1

||| =
(
1 +

1

2p

)2(
1 + h

p+0.5

t,1
∕C

12

)−2
− 1, (1)

and
|||Δt,2∕ht,2

||| = 1 −
(
C
12
h
−(p+0.5)

t,2
+ 1

) 1

p

(2p + 1)
−

1

p . (2)

sup
0≤ht,1≤H

|||Δt,1∕ht,1

||| = (1 + 1∕2p)2 − 1, inf
0≤ht,1≤H

|||Δt,1∕ht,1

||| = 0,

(8)

sup
H≤ht,2<∞

|||Δt,2∕ht,2

||| = 1 − (2p + 1)−1∕p, inf
H≤ht,2<∞

|||Δt,2∕ht,2

||| = 0.

4. Variations in Ut and U∗

t
 with increasing 

integration time t

First, we investigate the variation in U∗
t  with increasing t. 

Given Equation (6) and considering that 𝛿t = �/C(t) –Ne(0) 
monotonically decreases with t (Li, Zeng, and Chou 2001), 
h∗
t,1 increases monotonically and h∗

t,2 decreases mono-
tonically with increasing t. That is, as the integral time t 
increases, the length of the interval U∗

t  gradually shortens, 
and eventually becomes a point, which is the OS. This helps 
to explain the profile shape of the IES in Figure 1.

We next discuss the relationship between Ut and U∗
t  as 

t increases. We denote the MECT by T, and from Li, Zeng, 
and Chou (2001),

 

It is easy to prove that (𝛿t–Emin)/(T–t)>0. From the analysis 
in section 3, U∗

t  ⊂ Ut for t < T, Ut = U∗
t  = {H} for t = T, and 

both Ut and U∗
t  are empty sets for t >  T. Figure 3 shows 

a schematic representation of the variations in Ut and U∗
t  

with increasing t.

(9)T =
1

ĈLΓ̂
ln

⎡
⎢⎢⎢⎣

𝛿

�
ĈL

C1(1 + 1∕2p)∕
√
H + Ne(0)

⎤
⎥⎥⎥⎦
+ t0.

10
−1

10
0

10
1

10
0

10
1

h

t

Ut

Ut*

Figure 2.  relation diagram of the ies Ut and its approximate 
interval U∗

t
.

notes: the solid curve denotes Ẽ(h) = h−0.5+h; the grey solid line denotes E1(h) 
= h−0.5; the black solid line denotes E2(h) = h; the asterisk denotes (hcross, Ecross); 
the grey dashed line denotes E∗

1
 (h) = 1.5h−0.5; the black dashed line denotes 

E
∗
2
 (h) = 3h; and the black solid dot denotes (H, Emin).

Table 1. supremums of relative errors |Δt,1/ht,1| and |Δt,2/ht,2| with 
different choices of the numerical method order p.

p
sup

0≤h
t,1
≤H

|||Δt,1
∕h

t,1

||| sup
H≤h

t,2
<∞

|||Δt,2
∕h

t,2

|||
1 1.25 0.67
2 0.56 0.55
3 0.36 0.48
4 0.27 0.42
5 0.21 0.38
6 0.17 0.35
7 0.15 0.32
8 0.13 0.30
9 0.11 0.28
10 0.10 0.26

t

h

H

0 Tt

Ut Ut*

Figure 3.  schematic representation of the variations in the ies 
Ut (solid line) and its approximate interval U∗

t
 (dotted line) with 

increasing integration time t.
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5. Conclusion and prospection

The unified estimation in Equation (1) for the total error 
of the numerical solutions for nonlinear ODEs is used 
here to give a general formula, Equation (6), for deter-
mining U∗

t , which is an approximation of the IES Ut. The 
analyses given in sections 3 and 4 show that if the error 
limit � satisfies � ≥ C(t)(Emin + Ne(0)), and if the integration 
time t is not greater than the MECT T, there will always be  
U∗
t  ⊆ Ut; otherwise, both Ut and U∗

t  are empty sets. This result 
indicates that U∗

t  is suitable for approximating the interval 
Ut. In addition, formulae for the relative error of U∗

t  with 
respect to Ut are given, and numerical results suggest that 
the supremums of the relative errors tend to decrease with 
increasing numerical method order p. Finally, the varia-
tion in Ut and U∗

t  with increasing integral time t are studied 
(Figure 3) and used to explain the profile shape of the IES 
(Figure 1) in Li, Zeng, and Chou (2000).

For the IES, this article only studies nonlinear systems 
of ODEs. Further research is expected to consider complex 
PDEs and would aid in choosing an effective step size in 
numerical computation. In addition, the use of a higher 
order scheme such as the Taylor Series Method (Wang, Li, 
and Li 2012) in obtaining a reliable solution could effec-
tively reduce computation time when giving a fixed step 
size. Thus, the method of applying the IES is not the only 
choice to compute ODEs.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This study was supported by the National Natural Science Foun-
dation of China [grant numbers 41375110, 11471244].

References

Ding, R. Q., and J. P. Li. 2008a. “Comparison of the Influences of 
Initial Errors and Model Parameter Errors on Predictability 
of Numerical Forecast.” Chinese Journal of Geophysics 51 (4): 
718–724.

Ding, R. Q., and J. P. Li. 2008b. “Study on the Regularity of 
Predictability Limit of Chaotic Systems with Different Initial 
Errors.” Acta Physica Sinica 57 (12): 7494–7499.

D
ow

nl
oa

de
d 

by
 [

B
ei

jin
g 

N
or

m
al

 U
ni

ve
rs

ity
] 

at
 1

8:
53

 1
6 

N
ov

em
be

r 
20

17
 


	摘要
	1. Introduction
	2. Method for determining , an approximation of Ut
	3. Relationship between Ut and 
	4. Variations in Ut and  with increasing integration time t
	5. Conclusion and prospection
	Disclosure statement
	Funding
	References



